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Weak ferromagnetism in antiferromagnets: Fe2O3 and La2CuO4
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The problem of weak ferromagnetism in antiferromagnets due to canting of magnetic moments
was treated using Green’s function technique. At first the eigenvalues and eigenfunctions of the
electronic Hamiltonian corresponding to collinear magnetic configuration are calculated which are
then used to determine first and second variations of the total energy as a function of the magnetic
moments canting angle. Spin-orbit coupling is taken into account via perturbation theory. The
results of calculations are used to determine an effective spin Hamiltonian. This Hamiltonian can
be mapped on conventional spin Hamiltonian that allows to determine parameters of isotropic and
anisotropic (Dzyaloshinskii-Moriya) exchange interactions. The method was applied to the typical
antiferromagnets with weak ferromagnetism Fe2O3 and La2CuO4. The obtained directions and
values of the magnetic moments canting angles are in a reasonable agreement with experimental
data.

PACS numbers: 75.10.Hk, 75.30.Et

Heisenberg Hamiltonian is a basis of most theo-
retical investigations of transition metal compounds
magnetism.1,2,3 The essential part of these investigation
is determination of exchange interaction parameters Jij .
It can be done in a phenomenological way by fitting those
parameters to reproduce experimental data (temperature
dependence of magnetic susceptibility and magnon dis-
persion curves obtained in inelastic neutron scattering
measurements).4 However much more physically appeal-
ing is to obtain them in ab-initio calculations. In most
cases it was done via calculating total energy values for
various different magnetic moments configurations. Map-
ping on Heisenberg Hamiltonian gave a system of linear
equation for Jij (for example see Ref. 5). This procedure
becomes inconvenient for the systems with a large num-
ber of long range competing exchange interactions like in
(VO)2P2O7, NaV2O5, Cu2Te2O5X2 (X=Br,Cl), etc.6

In 1987 A.I. Lichtenstein et al.
7 proposed the cal-

culation method that does not use total energy differ-
ences. They determined exchange interaction parameters
via calculating second variation of total energy δ2E for
small deviation of magnetic moments from the collinear
magnetic configuration. The expression for this second
variation was derived analytically and required for its
evaluation calculation of the integral over production of
one-electron Green functions. This method was since
then successfully applied to the various transition metal
compounds.8,9,10,11

The combination of low symmetry and spin-orbit cou-
pling was shown by Dzyaloshinskii12 and Moriya13 to
give rise to anisotropic exchange coupling. Moriya has
shown how the processes involving an additional vir-
tual transition due to spin-orbit coupling can cause an
anisotropic exchange interaction as a correction to the
isotropic Anderson superexchange term and introduced
new term in spin Hamiltonian which is Dzyaloshinskii-
Moriya interaction (DM). Solovyev et al.

14 had shown
that Dzyaloshinskii-Moriya interaction parameters can

be calculated using perturbation theory and Green’s
function technique and described the canting of mag-
netic moments of LaMnO3. Recently, Katsnelson
and Lichtenstein15 derived the general expression for
Dzyaloshinskii-Moriya interaction term in LDA++ ap-
proach.

This paper is devoted to the problem of first-principles
theoretical description of weak ferromagnetism in antifer-
romagnets, specifically to the task of calculating weak fer-
romagnetic moment value and direction of spin canting.
For this we consider first and second variations of total
energy of the system at small deviation of magnetic mo-
ments from collinear configuration with spin-orbit cou-
pling introduced as a perturbation using Green’s function
technique. We show that there is an additional on-site
term that was not taken into account in previous work,14

which gives significant contribution to weak ferromag-
netic moment. Basing on the results of the calculations
we propose effective single site Hamiltonian. This Hamil-
tonian is sufficient for solving the problem of spin cant-
ing but it also can be rewritten to the conventional form
containing isotropic and anisotropic exchange interaction
terms. We have applied our method for weak ferromag-
netism in Fe2O3, the classical system which was used by
Moriya in his pioneering work,13 and in antiferromag-
netic cuprate La2CuO4 in low temperature orthorhom-
bic phase, estimated ferromagnetic moments values on
the metallic ions in these compounds and determined the
plane of spin canting.

Briefly, this paper is organized as follows. In Sec.I
we describe the method for calculation spin Hamiltonian
parameters responsible for magnetic moments canting.
Sec.II contains the results of our calculations for Fe2O3

and La2CuO4 crystals. In Sec.III we discuss and briefly
summarize our results.
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I. METHOD

According to the Andersen’s “local force
theorem”16,17,18 the total energy variation δE un-
der the small perturbation from the ground state
coincides with the sum of one-particle energy changes for
the occupied states at the fixed ground state potential.
In the first order for the perturbations of the charge and
spin densities one can find the following relation7:

δE =

∫ EF

−∞

dǫ ǫ δn(ǫ) = ǫF δz −

∫ EF

−∞

dǫ δN(ǫ)

= −

∫ EF

−∞

dǫ δN(ǫ), (1)

here n(ǫ) = dN/dǫ is the density of electron state,
N(ǫ) is integrated density of electron state and ǫF is
Fermi energy. In the case of magnetic excitation the
change of total number of electrons δz equals zero. The
Green function G is formally expressed in the usual way
G = (ǫ − H)−1. One can express density of states and
integrated density of states via Green function G:

n(ǫ) = −
1

π
Im Sp G(ǫ) (2)

and

N(ǫ) = −
1

π
Im Sp ln(ǫ − H). (3)

Then the variation of integrated density of state is given
by

δN(ǫ) =
1

π
Im Sp [δH G]. (4)

Therefore the first and second variations of total energy
of the system take the following forms:

δE = −
1

π

∫ EF

−∞

dǫ Im Sp (δH G) (5)

and

δ2E = −
1

π

∫ EF

−∞

dǫ Im Sp (δ2H G + δH GδH G). (6)

Operator of spin rotation on the site j on the angle

|~δφ| around direction ~n =
~δφ

| ~δφ|
is given by

Û = e
1

2
i ~δφ ~̂σ (7)

where ~̂σ = (σ̂x, σ̂y, σ̂z) are Pauli matrices. For small

| ~δφ| values we can expand the spin rotation operator in
following way

Û = 1 +
1

2
i ~δφ ~̂σ −

1

8
( ~δφ ~̂σ)2. (8)

New Hamiltonian of the system after rotation of the spin

on j site around direction ~n on the angle | ~δφ|

̂̃
H = Û †ĤÛ (9)

The first variation over the angle of rotation is expressed
in following form:

δĤ =
1

2
i ~δφ [Ĥ, ~̂σ] (10)

In the basis |ilmσ〉 (where i is site, l is orbital quan-
tum number, m is magnetic quantum number and σ
is spin index) the Hamiltonian matrix takes the form

Hσσ′

ilm,jlm′ = 〈ilmσ|Ĥ|jlm′σ′〉. For simplicity below we
drop the index of orbital and magnetic quantum numbers
and leave spin and site indexes. We assume that with-
out spin-orbit interaction the ground state corresponds
to the collinear magnetic configuration at which all spin
moments lie along z axis. Therefore the Hamiltonian ma-
trix Hσσ′

ij is diagonal in the spin subspace

Hij =

(
H

↑
ij 0

0 H
↓
ij

)
.

One can rewrite the first variation of Hamiltonian Eq.(10)
in the following form

δHjj = i δφx
j

(
0

∆j

2

−
∆j

2 0

)
+ δφy

j

(
0

∆j

2
∆j

2 0

)
, (11)

where ∆j = H
↑
jj − H

↓
jj. It is easy to show that the

second variation of Hamiltonian is given by

δ2Hjj = δ2φx
j

(
−

∆j

2 0

0
∆j

2

)
+ δ2φy

j

(
−

∆j

2 0

0
∆j

2

)
. (12)

The rotation of spin moment around z axis doesn’t
change the energy of the system therefore the term with
δφz is absent in Eq.(11,12).

Then we take into account the spin-orbit coupling via
perturbation theory. The Green function in the first or-
der perturbation theory with respect to the spin-orbit
coupling can be written as

G̃ij = Gij +
∑

k

Gik Hso
k Gkj , (13)

here Hso
k = λk

~L ~S, i, j and k denote site, Gij is Green
function of system with collinear magnetic configuration,
and λk is spin-orbit coupling constant. The first variation
of total energy Eq.(5) takes the form:

δE = −
1

π

∑

i

∫ EF

−∞

dǫ Im Sp

×(δHi Gii +
∑

k

δHi Gik Hso
k Gki). (14)
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The first term in Eq.(14) is zero. The second term can
be expressed as a following sum

δE =
∑

i

Ax
i δφx

i + Ay
i δφy

i , (15)

where

Ax
i =

∑

k

Bx
ik = −

1

2π

∫ EF

−∞

dǫ Re

×
∑

k

(∆i G↓
ik Hso

k ↓↑ G↑
ki − ∆i G↑

ik Hso
k ↑↓ G↓

ki) (16)

and

Ay
i =

∑

k

By
ik = −

1

2π

∫ EF

−∞

dǫ Im

×
∑

k

(∆i G↓
ik Hso

k ↓↑ G↑
ki + ∆i G↑

ik Hso
k ↑↓ G↓

ki). (17)

We consider the situation when all spins lie along z axis
and therefore the rotation around it does not change
the energy of system. In order to find Az

i component

of the magnetic torque vector ~Ai we change the coordi-
nate system in the following way (x,y,z)→(z,y,-x) (rota-
tion around y axis):

H̃so =
1

2

(
1 1
−1 1

) (
Hso

↑↑ Hso
↑↓

Hso
↓↑ Hso

↓↓

) (
1 −1
1 1

)
. (18)

Therefore Ax
i component in new coordinate system is Az

i

in the old one:

Az
i =

∑

ik

Bz
ik = −

1

4π

∫ EF

−∞

dǫ Re

×
∑

k

(∆i G↑
ik (Hso

k ↑↑ − Hso
k ↓↓)G↓

ki

−∆i G↓
ik (Hso

k ↑↑ − Hso
k ↓↓)G↑

ki). (19)

In contrast to the first variation δE, the second varia-
tion of total energy δ2E for small deviations of magnetic
moments from ground-state collinear magnetic configura-
tion has nonzero value without taking into account spin-
orbit coupling:

δ2E = −
1

π

∫ EF

−∞

dǫ Im Sp (
1

2

∑

i

δ2HiiGii

+
1

2

∑

j

δ2HjjGjj +
∑

ij

δHi Gij δHj Gji), (20)

where

Sp (δ2Hii Gii) =
1

2
δ2φx

i ∆i(G
↓
ii − G↑

ii)

+
1

2
δ2φy

i ∆i(G
↓
ii − G↑

ii) (21)

and

Sp (δHi Gij δHj Gji) =
1

2
δφx

i δφx
j (∆i G↓

ij ∆j G↑
ji)

+
1

2
δφy

i δφy
j (∆i G↓

ij ∆j G↑
ji). (22)

Using the condition G↑
ii − G↓

ii = (G↑∆ G↓)ii =∑
j G↑

ij∆j G↓
ji one may rewrite Eq.(20) in following form:

δ2E =
1

4π

∫ EF

−∞

dǫ Im
∑

ij

(∆i G↓
ij ∆j G↑

ji)

×((δφx
i − δφx

j )2 + (δφy
i − δφy

j )2). (23)

One can see that the Eq.(23) contains only x and y com-

ponents of ~δφ. In order to include z component one can
use the same rotation of coordinate system as for the site

magnetic torque vector ~A Eq.(18). Finally, we obtain the

following function of the total energy over angle ~δφ:

∆E =
∑

i

~Ai
~δφi +

1

2

∑

ij

Jij | ~δφi − ~δφj |
2, (24)

where

Jij =
1

4π

∫ EF

−∞

dǫ Im(∆i G↓
ij ∆j G↑

ji). (25)

The aim of this paper is description of canted mag-
netism in transition metal compounds caused by spin-
orbit coupling. For this we have used the expression
Eq.(24) for the total energy as a function of canting an-
gle. In order to solve the problem of the weak ferromag-
netism in antiferromagnets we suppose that the crystal
is an antiferromagnet containing two sublattices 1 and 2,
with the same canting angle for the atoms belonging to
the same sublattice. With this assumption the Eq.(24)
is reduced to the following form:

∆E = ~A1
~δφ1 + ~A2

~δφ2 +
∑

j>1

J1j | ~δφ1 − ~δφ2|
2. (26)

Our results for Fe2O3 and La2CuO4 demonstrated that
~A1 = - ~A2 (torque vector has an opposite sign for the
atoms belonging to the different sublattices). That gives:

∆E = ~A1 ( ~δφ1 − ~δφ2) +
∑

j>1

J1j | ~δφ1 − ~δφ2|
2. (27)

If we further suppose that the deviations of magnetic mo-

ments from the average direction defined by ~δφi have the
same absolute value but different sign for both sublat-
tices, then Eq.(27) takes the following form (we suppose
that magnetic moments lie in plane perpendicular to site

magnetic torque vector ~A and canting occurs in the same
plane)

∆E = 2 ~A1
~δφ1 + 4

∑

j>1

J1j | ~δφ1|
2. (28)
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Then we find the value of | ~δφ1| where ∆E has a mini-
mum:

| ~δφ1| =
| ~A1|

4
∑

j>1 J1j

. (29)

The next step is to establish a connection between
Eq.(24) and conventional spin Hamiltonian

H = HDM + Hexch =
∑

i6=j

~Dij [~ei × ~ej]

+
∑

i6=j

Jij ~ei~ej, (30)

where ei is unit vector in the direction of the ith site
magnetization, Jij is exchange interaction and ~Dij is
Dzyaloshinskii-Moriya vector. One can rewrite the sec-
ond term in Eq.(30) as Hexch =

∑
ij Jij |~ei| |~ej|cos(θij).

In the limit of small canting angle values we can assume

that cos(θij) = 1 − | ~δφi − ~δφj |
2/2 and exchange inter-

action energy for antiferromagnetic configuration has a
form:

∆Hexch =
1

2

∑

ij

Jij | ~δφi − ~δφj |
2. (31)

Therefore in the limit of small ~δφ we can directly map
the second term of total energy variation Eq.(24) onto
first term in spin Hamiltonian Eq.(30).

The first term in Eq.(24) describes the deviation of
the spin moment on the site i from the initial collinear
spin configuration direction. We assume that this initial
spin direction on the site i is defined by the direction of

Weiss mean-field ~HWF
i =

∑
j( 6=i) Jij ~ej (corresponding

unit vector is ~e 0
i =

~HW F
i

| ~HW F
i

|
). Therefore we can map the

first term in Eq.(24) on the spin Hamiltonian

Hdev =
∑

i

~Ai [~e 0
i × ~ei] (32)

describing the deviation of spin moments away from the
direction ~e 0

i of external Weiss field. (We have used

here the connection between rotation vector ~δφi and the
change of the magnetic moment unit vector δ~ei = ~ei−~e 0

i :

δ~ei = [ ~δφi×~e 0
i ].) In order to demonstrate the connection

between ~Ai and ~Dij one can rewrite the Eq.(32) in the
following form:

Hdev =
1

2
(
∑

i

~Ai [
~HWF

i

| ~HWF
i |

× ~ei]

+
∑

j

~Aj [
~HWF

j

| ~HWF
j |

× ~ej ]). (33)

Using our definition of ~HWF
i we obtain:

Hdev =
1

2
(
∑

ij

~Ai

| ~HWF
i |

Jij [~ej × ~ei]

+
∑

ij

~Aj

| ~HWF
j |

Jij [~ei × ~ej ]). (34)

This gives us the following expression for parameter ~Dij

of spin Hamiltonian Eq.(30):

~Dij =
1

2
Jij (

~Aj

| ~HWF
j |

−
~Ai

| ~HWF
i |

). (35)

Therefore the components of Dzyaloshinskii-Moriya in-
teraction vector are given by

Dx
ij = −

1

4π
Jij

∫ EF

−∞

dǫ Re
∑

k

×(
∆j G↓

jk Hso
k ↓↑ G↑

kj − ∆jG
↑
jk Hso

k ↑↓ G↓
kj

| ~HWF
j |

−
∆i G↓

ik Hso
k ↓↑ G↑

ki − ∆iG
↑
ik Hso

k ↑↓ G↓
ki

| ~HWF
i |

), (36)

Dy
ij = −

1

4π
Jij

∫ EF

−∞

dǫ Im
∑

k

×(
∆j G↓

jk Hso
k ↓↑ G↑

kj + ∆jG
↑
jk Hso

k ↑↓ G↓
kj

| ~HWF
j |

−
∆i G↓

ik Hso
k ↓↑ G↑

ki + ∆iG
↑
ik Hso

k ↑↓ G↓
ki

| ~HWF
i |

), (37)

Dz
ij = −

1

8π
Jij

∫ EF

−∞

dǫ Re
∑

k

×(
∆j G↑

jk (Hso
k ↑↑ − Hso

k ↓↓)G↓
kj

| ~HWF
j |

−
∆j G↓

jk (Hso
k ↑↑ − Hso

k ↓↓)G↑
kj

| ~HWF
j |

−
∆i G↑

ik (Hso
k ↑↑ − Hso

k ↓↓)G↓
ki

| ~HWF
i |

+
∆i G↓

ik (Hso
k ↑↑ − Hso

k ↓↓)G↑
ki

| ~HWF
i |

). (38)

We have obtained more general expression for
Dzyaloshinskii-Moriya interaction parameter in compar-
ison with those presented in paper.14 There are two kind

of contributions into magnetic torque vector ~Ai: on-site

interaction ~Bii (absent in work14) and intersite interac-

tion ~Bik(i 6= k). We have found that on-site contribution
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in magnetic torque ~A which was not considered before
plays an important role in weak ferromagnetism descrip-
tion.

We have applied the calculation scheme developed
above to the typical antiferromagnets with weak ferro-
magnetism Fe2O3 and La2CuO4 in low-temperature or-
thorhombic phase. In order to calculate Green functions
corresponding to the collinear spin configurations we used
LDA+U approach19 realized in LMTO method within
Atomic Sphere Approximation.20

II. RESULTS

A. Fe2O3

Weak ferromagnetism or weak non-collinearity of es-
sentially antiparallel magnetic moments was first ob-
served in α-hematite, α-Fe2O3.

21 The trigonal crystal of
Fe2O3 has R3̄c space group. Depending on temperature
α-hematite may occur in two different antiferromagnetic
states: at T < 250 K the spins are along the trigonal axis,
and at 250 K < T < 950 K they lie in one of the verti-
cal planes of symmetry making a small angle 1.1 × 10−3

with basal plane.22,23 In the latter case the α-Fe2O3 has
a net ferromagnetic moment. Dzyaloshinskii has shown
that the spin superstructure gives rise to a nonvanish-
ing antisymmetric spin coupling vector which is paral-
lel to the trigonal axis. Moriya13 gave phenomenologi-
cal Dzyaloshinski’s explanation a microscopic footing by
means of Anderson’s perturbation approach to magnetic
superexchange.

Sandratskii et al.24 have performed the calculation
based on the local approximation to spin-density func-
tional theory (LSDA) using the fully relativistic version
of ASW method. In spite of the well-known problem
that the LSDA has with a proper determination of the
energy gap in semiconducting and insulating materials,
the authors24 succeeded in describing a weak ferromag-
netism and obtained the ferromagnetic moment of about
0.002 µB. In the present study we treat the problem of
description of weak ferromagnetism in Fe2O3 using per-
turbation theory.

Electronic structure of α-hematite calculated using the
standard LDA+U approximation19 with on-site Coulomb
interaction parameters U = 5 eV, J = 0.88 eV and struc-
ture data from25 is in a good agreement with previous
theoretical calculations.26 We have obtained the mag-
netic moment of 4.1 µB per Fe atom. This value is a
little smaller than those obtained in experiments (4.6-4.9
µB). The energy gap value of 1.67 eV is also slightly
underestimated comparing with experimental data (2.14
eV in paper27).

The Brillouin zone integration has been performed in
the grid generated by using (6;6;6) divisions. The energy
integration has been performed in the complex plane by
using 800 energy points on the rectangular contour. The
calculated isotropic exchange interactions and contribu-

Y

Z

X

3

4

1

2

4’

4’’

1’

3’

FIG. 1: Crystal structure of α-Fe2O3. Large circles are Fe
atoms which belong the smallest unit cell used in the LDA+U
calculations. The small circles are Fe atoms which surround
Atom 2. Arrows denote the magnetic configuration used in
our calculation.

tions in site magnetic torque ~A2 are presented in Table I.
The simplified crystal structure and the interaction paths
are shown in Fig.1.

One can see that the obtained interaction picture is
more complicated that those Moriya examined in order to
describe the weak ferromagnetism in α-hematite.13 There
are strong isotropic exchange interaction with third and
fourth neighbours. This agrees well with experimental
results28 and theoretical predictions.29 The summary ex-
change of atom 2 with nearest neighbours is given by
J2 =

∑
i6=2 J2 i = 189.26 meV.

The components of site magnetic torque vector on the
atom 2 are given by Ax

2 =
∑

i Bx
2i = 0 eV, Ay

2 =∑
i By

2i = 0 eV and Az
2 =

∑
i Bz

2i = 0.281 meV. One can
see that the on-site interaction Bz

22 gives the main contri-

bution in ~A2. We have calculated also the site magnetic

torque of ~A1 which has the following components (0;0;-
0.281), the same value but the opposite sign comparing

with ~A2. The value of canting angle of | ~δφ| = 0.4×10−3

calculated with Eq.(29) is of the correct order of magni-
tude but is more than two time smaller than experimental
data 1.1×10−3 (Ref. 22,23). The reason for the difference
between experimentally observed and calculated here val-
ues of canting angle could be the necessity to take into
consideration the higher order terms with respect to spin-
orbit coupling which were not considered in the present
study.

It is easy to show that in the case when all spin lie
along z axis there is no canting of the spin moments. On
the other hand if direction of Weiss field is perpendicular
to z axis the canting exists and the system has weak
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TABLE I: Isotropic exchange interaction parameter and dif-
ferent contributions in components of site magnetic torque of
Fe2O3 (in meV). The couplings with negative sign are ferro-

magnetic. dij is distance between i and j atoms in a.u. ~Rij

is radius vector from i site to j site in units of the lattice
constant (5.49 a.u.).

(i, j) dij
~Rij Jij Bx

ij By

ij Bz
ij

(2,2) 0 (0;0;0) 0 0 0 0.162
(2,1) 5.45 (0;0;-0.99) 8.576 0 0 0.005
(2,3’) 5.60 (-0.5;-0.86;0.20) -7.3 -0.036 0.015 0.001
(2,3’) 5.60 (1;0;0.20) -7.3 0.032 0.023 0.001
(2,3’) 5.60 (-0.5;0.86;0.20) -7.3 0.004 -0.038 0.001
(2,1’) 6.36 (0.5;-0.86;-0.58) 25.224 0.071 0.019 -0.14
(2,1’) 6.36 (-1;0;-0.58) 25.224 -0.052 0.052 -0.14
(2,1’) 6.36 (0.5; 0.86;-0.58) 25.224 -0.019 -0.071 -0.14
(2,4’) 6.99 (0.5;-0.86;0.79) 17.502 0.168 0.063 0.101
(2,4’) 6.99 (-1;0;0.79) 17.502 -0.139 0.114 0.101
(2,4’) 6.99 (0.5;0.86;0.79) 17.502 -0.029 -0.178 0.101
(2,4”) 6.99 (-0.5;-0.86;-0.79) 17.502 0.128 0.094 0.076
(2,4”) 6.99 (1;0;-0.79) 17.502 0.017 -0.158 0.076
(2,4”) 6.99 (-0.5;0.86;-0.79) 17.502 -0.145 0.064 0.076

ferromagnetic moment. This picture fully agrees with
experimental and theoretical data.13,22,23

B. La2CuO4

In the case of the cuprates Dzyaloshinskii-Moriya in-
teraction is the leading source of anisotropy, since single-
ion anisotropy does not occur due to the S= 1

2 nature of

the spins on the Cu2+ sites. The experimental data30,31

demonstrate that in case of low temperature orthorhom-
bic phase the spins do not lie exactly in the Cu-O
planes, but are canted out of the plane by a small an-
gle (0.17◦). Coffey and coworkers32 made complete ex-
amination of the anisotropic exchange interaction in or-
thorhombic phase based on a symmetry consideration.
They assumed rotation axis of the the CuO6 as a direc-
tion of antisymmetric exchange interaction and obtained
that the spins are canted in plane which is perpendicular
Dzyaloshinskii-Moriya vector.

The first attempt at a microscopic calculation of the
Dzyaloshinskii-Moriya anisotropy for La2CuO4 in low
temperature orthorhombic and tetragonal phases was
made by Coffey, Rice, and Zhang.33 They have neglected
the symmetric anisotropic exchange interaction which is
of the second order with respect to the spin-orbit coupling
and can be written in spin Hamiltonian in the following
form:

Hij = ~Si Mij
~Sj ,

where Mij is a symmetric 3 × 3 tensor.
Shekhtman, Entin-Wolhman, and Aharony34 have

shown that symmetric anisotropic exchange interaction
can not be neglected, since its contribution to the mag-
netic energy is of the same order of magnitude as that

1 2

0

4 3

y

x

FIG. 2: The schematic crystal structure of La2CuO4 in low
temperature orthorhombic phase. The open circles are oxygen
atoms which are tilted up out of the Cu plane, the black circles
are oxygen atoms tilted down out the Cu plane. The big
gray circles are copper atoms. Arrows denote the magnetic
configuration used in LDA+U calculations with spin moments
lie along z axis.

of the antisymmetric anisotropic exchange interaction
(Dzyaloshinskii-Moriya). On the basis of our results (as
we show below) we can conclude also that taking into
account the second order terms with respect to the spin-
orbit coupling must be important.

We have performed the LDA+U calculations for
La2CuO4 in low temperature orthorhombic phase using
structural data for Nd doped La2CuO4,

35 with on-site
Coulomb interaction parameters U = 10 eV, J =1 eV
(the same as used in work36). The schematic structure of
Cu-O layer of La2CuO4 in low temperature orthorhombic
phase is presented in Fig.2.

The experimental value of the energy gap is reported to
be about 2 eV (Ref. 37). Our gap value of 1.94 eV is in a
good agreement with experimental data. The calculated
magnetic moment value on Cu atom is 0.61 µB which
also agrees well with experiment.38

TABLE II: Isotropic exchange J0j and the components of dif-

ferent contributions in site magnetic torque ~A0 (in meV). ~Rij

is radius vector from i site to j site in units of the lattice
constant (10.14 a.u.).

(i, j) ~Rij Jij Bx
ij By

ij Bz
ij

(0,0) (0;0;0) 0 0.101 0 0
(0,1) (-0.5;0.5;0) 14.576 0.020 -0.032 -0.005
(0,2) (0.5;0.5;0) 14.576 0.020 0.032 0.005
(0,3) (0.5;-0.5;0) 14.576 0.020 -0.032 -0.005
(0,4) (-0.5;-0.5;0) 14.576 0.020 0.032 0.005

We have performed calculations of isotropic exchange
interactions and the different contributions to site mag-
netic torque components (Table II) using the energy in-
tegration in the complex plane with 700 energy points on
the rectangular contour and the Brillouin zone integra-
tion has been performed in the grid generated by using
(6;6;6) divisions. The obtained values of exchange inter-
action parameters are in a good agreement with results
of previous calculations for low temperature tetragonal
phase36 and experimental estimations.30 The exchange
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interactions with next neighbours are negligibly small.
The summary exchange and the components of site mag-
netic torque are given by J0 =

∑
i6=0 J0 i = 58.304 meV,

Ax
0 = 0.18 meV, Ay

0 = 0 meV and Az
0 = 0 eV. We

obtained that ~A2=(-0.18;0;0), again of the same value

but the opposite sign comparing with ~A0. It means
that the system has net ferromagnetic moment if spins
lie in plane which is perpendicular to x axis, which is
axis of rotation of oxygen octahedra. This fully agrees
with results of previous theoretical works.30,32,33 The ob-

tained value of canting angle | ~δφ| = 0.77×10−3 is about
three times smaller than those experimentally observed
2.2 ÷ 2.9 × 10−3 (Ref. 30,31).

Again as for Fe2O3 we expect that the inclusion of
second order spin-orbit coupling terms could improve the
agreement. Such calculations are in progress.

III. CONCLUSION

We present a method for calculation of spin Hamilto-
nian parameters responsible for magnetic moments cant-

ing. The effective Hamiltonian for canted magnetism
was proposed. We shown that the parameters of this
model Hamiltonian can be obtained from first-principles
calculations. Using the developed method we described
the weak ferromagnetism in Fe2O3 and La2CuO4. It

was shown that on-site contribution ~Bii in site magnetic

torque ~Ai plays the crucial role for net ferromagnetic
moment of Fe2O3 and La2CuO4 in low temperature or-
thorhombic phase.
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